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Numerical solutions of incompressible Navier–Stokes
equations using modi�ed Bernoulli’s law
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SUMMARY

Simulations of incompressible �ows are important for many practical applications in aeronautics and
beyond, particularly in the high Reynolds number regime. The present formulation is based on Helmholtz
velocity decomposition where the velocity is presented as the gradient of a potential plus a rotational
component. Substituting in the continuity equation yields a Poisson equation for the potential which is
solved with a zero normal derivative at solid surfaces. The momentum equation is used to update the
rotational component with no slip=no penetration surface boundary conditions. The pressure is related
to the potential function through a special relation which is a generalization of Bernoulli’s law, with
a viscous term included. Results of calculations for two- and three-dimensional problems prove that
the present formulation is a valid approach, with some possible bene�ts compared to existing methods.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of incompressible �ows is a useful tool to study many interesting
problems of �uid mechanics, beyond aeronautics, for example �ow around cars and buildings,
�ow in rivers and channels, blood �ow and many others.
Gases at low speeds, behave like liquids, namely, density can be considered constant in

the absence of heat, so there are applications including the motion of air and the motion of
water based on the same incompressible �ow models.
Numerical simulations of incompressible �ows are well developed (see References [1–7]).

There are many algorithms available nowadays to solve Navier–Stokes equations, in many
forms and there are many commercial codes, based on these algorithms, and are used to
solve practical problems. Nevertheless, the research in this �eld has not stopped, as indicated
by this work for at least two reasons. First, there are open questions regarding some of the
existing methods. Second, there is always a need for improvement and with computers getting
cheaper and more powerful, in both speed and memory, it is worthwhile to consider new ideas.
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For two-dimensional (and axisymmetric) �ows, the stream function=vorticity formulation
of Navier–Stokes equations have been used since the 1940s. In the 1960s, three algorithms
were introduced to solve the primitive variable forms of Navier–Stokes equations. Harlow and
Welch [8] solved a Poisson equation, obtained from the divergence of the momentum equation,
to calculate the pressure. Chorin [9] introduced the arti�cial compressibility method by adding
an arti�cial time derivative term of the pressure to the continuity equation, with a coe�cient
related to the associated arti�cial speed of sound. Steady-state solutions are obtained for
the modi�ed initial=boundary value problems; dual time steps were introduced later by Kwak
et al. [10] as well as by Merkle [11] for calculations of time-dependent problems. Chorin [12]
introduced also the projection method where he decomposed the velocity into two parts; the
correction to the velocity obtained from the momentum equation is assumed to be proportional
to the gradient of the pressure. Substituting such a decomposition into the continuity equation
yields again a Poisson equation for the pressure (the slip velocity, however, may not be
exactly enforced at the discrete level; so, it is not zero to machine accuracy). Other related
methods are the vector potential and velocity=vorticity formulations. See Reference [13] for
more details.
Finite di�erences and �nite volumes on staggered and regular (collocated) grids have been

used in many applications (see References [14–16]). Finite-element formulations, on the other
hand, are usually based on di�erent interpolations for the velocity and for the pressure. The
same interpolation can be used, if arti�cial viscosity is added to the continuity equation. In
this case, discrete mass is not conserved to machine accuracy [17, 18]. In all cases, iterative
methods are used to solve the non-linear algebraic equations resulting from the discretization
process.
In the present work, a velocity decomposition is used where the velocity is represented as

a gradient of a potential plus a rotational component. The potential is related to the pressure
in a special form which is a generalization of Bernoulli’s law, including a viscous term, i.e.
a modi�ed Bernoulli’s law.
In the following, the details of the formulation will be discussed and some simple problems,

where for convenience only Cartesian grids are required, will be solved. Standard numerical
methods will be employed. All terms are approximated using central di�erences except for the
convective terms, where upwinding is introduced. The discrete equations are solved iteratively
via line relaxations, in a segregated manner.
The examples are chosen to demonstrate viscous=inviscid interaction for internal and exter-

nal �ows in two and three dimensions. Incompressible two-dimensional �ows over in�nite and
�nite �at plate, �ows with pressure gradient and with suction as well as �ows over obstacles
are studied. For three dimensions, �ows over a �nite plate, corner �ows and �ows in ducts
with square cross-sections are simulated to con�rm the validity of the present formulation.
Finally, possible merits and further studies are discussed in the conclusion section.

2. PRESENT FORMULATION, GOVERNING EQUATIONS, AND BOUNDARY
CONDITIONS

2.1. Motivation

Consider high-Reynolds-number �ows over streamlined bodies. The viscous stresses are con-
�ned to boundary layers and wakes. Outside these thin layers, the �ow is inviscid and
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irrotational for uniform upstream conditions. In the viscous=inviscid interaction procedures,
boundary-layer equations are solved to provide the displacement thickness distributions. The
potential �ow equation is solved over the original bodies augmented with the displacement
thickness, where the velocity is calculated as the gradient of the potential and the pressure
is obtained via Bernoulli’s law. Iterations are required to solve the boundary-layer equations
with the pressure gradient obtained from the potential �ow calculations. Convergence of such
iterative procedures usually su�ers, particularly in the case of separated �ows. Although, in
principle, boundary-layer approximations are not valid for separated �ows, specially at sep-
aration and reattachment points, interactive boundary-layer calculations produce acceptable
results, at least for engineering applications, provided the convergence of the interactive pro-
cedure is not a problem. Boundary-layer approximations are not, however, valid in other
regions, for example at the trailing edges, and more important at corners and wing tips.
In the same spirit of interactive boundary-layer calculations, zonal approaches were intro-

duced, where the potential �ow equation is solved in the outer region while Navier–Stokes
equations are solved in the inner region. An arti�cial, internal boundary between the two
regions must be handled correctly, otherwise errors will be re�ected from these boundaries
during iterations and convergence becomes slow [19]. Accuracy of the calculations can be also
a�ected. Usually, there is an overlap region and a Schwartz-type iteration can be developed.
Thus, the potential �ow provides boundary condition for Navier–Stokes calculations which is
limited to the viscous �ow region. In return, there is a feedback in terms of the mass �ux as
boundary conditions for the potential �ow.
In the present formulation, some of these ideas are combined in a new and di�erent way to

have their advantages without the associated penalties. Let us consider, just for the sake
of demonstration, the stream function=vorticity formulation for two-dimensional problems.
Navier–Stokes equations can be written in the form

 xx +  yy =−! (1)

u!x + v!y =
1
Re
(!xx +!yy) (2)

with the boundary conditions at the solid surface

 = constant (3)

@ 
@n
= 0 (4)

where n is the normal to the solid boundary. Equation (3) imposes the no surface penetration
condition while Equation (4) is the no-slip condition. In the far �eld, a uniform �ow, with
no vorticity, is imposed on the calculation, except downstream of the wake where boundary
layer approximation can be used as a non-re�ecting boundary condition, namely,

 yy =−! (5)

u!x + v!y =
1
Re

!yy (6)
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Notice, backward di�erence approximation for !x will eliminate any need for downstream
information. Since the vorticity vanishes outside the viscous layer, Equation (2) is solved only
in the viscous region. One can set !=0 in the outer region (the viscous region can be a
priori estimated conservatively for many problems). The distributed vorticity, generated in the
viscous region, plays the role of a forcing function (non-homogeneous term) in the stream-
function equation. The latter is solved everywhere in the �eld and reduces automatically to the
irrotational �ow equation in the outer region. To have an acceptable resolution of the physics,
a �ne mesh must be used in the viscous region, with a characteristic length comparable to
the boundary-layer thickness, while a coarser mesh can be used in the inviscid �ow where
the characteristic length is the body length. Such a strategy has been tested in Reference [20]
and it was shown that it is more e�cient than the alternating Schwartz iteration.
Unfortunately, it is not easy to extend the above formulation to three-dimensional problems.

At least, two stream functions and two vorticity components are needed and the boundary
conditions at the solid surface become complicated. In References [21, 22] Cauchy=Riemann
equations for the velocity components are used to overcome these di�culties. However, the
three velocity components must be calculated everywhere in the viscous and in the inviscid
regions.
In the present work, the potential function is used instead, using Helmholtz velocity decom-

position. The rotational components are calculated only in the viscous region. In some sense,
this approach is an attempt to develop an equivalent system of the stream function=vorticity
formulation but it is not restricted to two dimensions.

2.2. Helmholtz velocity decomposition

According to a main theorem of vector analysis due to Helmholtz, a vector can be decomposed
into a curl free component and a divergence free component, under very general conditions
(e.g. the vector magnitude must be bounded in the far �eld).
In the present work, we use the following velocity decomposition:

q=∇�+ q∗ (7)

where � is a potential function and q∗ is the rotational component of the velocity �eld. Since
the curl of the gradient vanishes (∇×∇�=0), Equation (7) leads to

∇× q=∇× q∗ (8)

Similar decompositions have been used in the literature for �ow simulations in many ways.
See for example, the recent work of Nikfetrat and Hafez [23, 24] for a review and in particular,
see References [15, 25–33].
The main feature in the present work is that � is related to the pressure in a speci�ed form

as will be shown below.
Substituting Equation (7) in the continuity equation yields

∇2�=−∇ · q∗ (9)

Equation (9) is a Poisson equation for the potential function �, where the forcing function
(non-homogeneous term) is related to the divergence of the rotational component of the
velocity.
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Alternately, substituting Equation (7) in the normalized momentum equation yields

(q · ∇)q∗= g+
1
Re

∇2q∗ (10)

where g= g1 + g2, and

g1 =−∇
(
P +

1
2
(∇�)2 − 1

Re
(∇2�)

)

g2 =−(q∗ · ∇)∇�

In the above equation, P is the static pressure, and g1 is set equal to zero. The rational
behind this choice is that the vorticity in terms of q∗ (i.e. ∇× q∗) should be independent of
g1 since the latter is a gradient of a scalar function. Hence, q∗ is obtained from

(q · ∇)q∗=−(q∗ · ∇)∇�+
1
Re

∇2q∗ (11)

The pressure is obtained from the modi�ed Bernoulli’s law:

P +
1
2
(∇�)2 − 1

Re
(∇2�)= constant (12)

Notice, the pressure is not needed during the iteration. After convergence, the pressure is
given in terms of � as indicated by Equation (12). The constant on the right side is evaluated
in terms of upstream uniform conditions.

2.3. Boundary conditions

The choice of boundary conditions for the potential function � is important in this formula-
tion to satisfy the requirement that the potential function represents the inviscid �ow region.
Therefore, at a solid surface

@�
@n
=0 (13)

Hence, from the no penetration boundary condition

q∗ · n=0 (14)

The no-slip boundary condition is given by

q∗ · �= − @�
@t

(15)

where � is the tangent to the solid surface. In the far �eld, the �ow is irrotational (except at the
wake boundary) and q∗ (and the gradient of its components) should vanish. The components
of q∗ are obtained from Equation (11) together with the conditions (14) and (15).
Notice also, that with condition (13) there is one-to-one relationship between the pressure

and the potential function according to Equation (12), i.e. given P, one can �nd � and vice
versa.
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The q∗ vector should vanish in the inviscid �ow region and therefore the solution of the
momentum equation can be limited to the viscous region.
Also, the standard Poisson equation for the pressure, obtained by taking the divergence of

the momentum equation, is not required and Equation (12) should give the same result (up
to truncation errors).
Finally, Equation (10) is not in conservation form. One can update q∗ based on the con-

servation of the momentum equation via a deferred correction procedure, namely,

q · ∇Tq∗ + (Tq∗ · ∇)∇�− 1
Re

∇2Tq∗=−RM (16)

where Tq∗ is the correction of q∗ and RM is the momentum equation in conservation form
(notice that the viscous stresses in RM will require the evaluation of third derivatives of �).

2.4. Numerical methods

The present formulation consists of a Poisson equation for the potential function and convec-
tion=di�usion equations for the rotational components of the velocity. One can solve all the
equations, simultaneously coupled, using Newton’s method and a direct solver for the un-
knowns at each Newton’s iteration. This approach is not feasible for general three-dimensional
calculations. A segregated approach is used instead, where the potential equation is solved
assuming the rotational components of the velocity are known and the momentum equation is
used to update the rotational velocities assuming the potential is known. In this case, arti�cial
time-dependent terms are added to the momentum equation to guarantee the convergence of
the iterative procedure. Standard numerical methods are employed for all the simple problems
treated in this study.
First the domain of interest is discretized using Cartesian grids. This is possible for the

simple geometries of the examples considered here. Second, the equations are discretized using
�nite di�erences. For the potential equation, central di�erences are used everywhere. Hence,
at a grid point, (i; j), in two dimensions, the discrete equation reads

�i+1; j − 2�i; j + �i−1; j
�x2

+
�i; j+1 − 2�i; j + �i; j−1

�y2

=− �ui+1; j − �ui−1; j
2�x

− �vi; j+1 − �vi; j−1
2�y

(17)

where �u and �v are the rotational components of the velocity. At a solid surface, the Neumann
boundary condition, @�=@n=0, is imposed implicitly, at the discrete level. For example, if
the solid surface is horizontal and is placed between grids then the discrete equations at the
points next to the surface are modi�ed accordingly. At the point (i; j), Equation (17) becomes

�i+1; j − 2�i; j + �i−1; j
�x2

+
�i; j+1 − �i; j

�y2
=− �ui+1; j − �ui−1; j

2�x
− �vi; j+1 + �vi; j

2�y
(18)

In Equation (18), we used the relation (�vi; j + �vi; j−1)=2=0 at the solid surface, where the
point (i; j − 1) is �ctitious.
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Alternately, if the solid surface is placed at the grid line then

�i+1; j − 2�i; j + �i−1; j
�x2

+
2�i; j+1 − 2�i; j

�y2
=− �ui+1; j − �ui−1; j

2�x
− �vi; j+1
�y

(19)

Equation (19) is slightly di�erent but consistent with Equation (18). The equations for the
unknown �i; j are solved by successive line overrelaxation (SLOR) procedure. The discrete
equations for �ui; j and �vi; j are given by

�u∗i; j − �un
i; j

�t
+ �un

i; j

�un
i+1; j − �un+1

i−1; j
2�x

− �x
2

| �un
i; j|
�un
i+1; j − 2�u∗i; j + �un+1

i−1; j
�x2

+ vni; j
�u∗i; j+1 − �u∗i; j−1

2�y
+ �un

i; j

�n+1
i+1; j − 2�n+1

i; j + �n+1
i−1; j

�x2

+ �vni; j
�n+1

i+1; j+1 − �n+1
i−1; j+1 − �n+1

i+1; j−1 + �n+1
i−1; j−1

4�x�y

=
1
Re

(
�un
i+1; j − 2�u∗i; j + �un+1

i−1; j
�x2

+
�u∗i; j+1 − 2�u∗i; j + �u∗i; j−1

�y2

)
(20)

and

�v∗i; j − �vni; j
�t

+ �un
i; j

�vni+1; j − �vn+1i−1; j
2�x

− �x
2

| �un
i; j|
�vni+1; j − 2�v∗i; j + �vn+1i−1; j

�x2

+ vni; j
�v∗i; j+1 − �v∗i; j−1

2�y
+ �vni; j

�n+1
i; j+1 − 2�n+1

i; j + �n+1
i; j−1

�y2

+ �un
i; j

�n+1
i+1; j+1 − �n+1

i−1; j+1 − �n+1
i+1; j−1 + �n+1

i−1; j−1
4�x�y

=
1
Re

(
�vni+1; j − 2�v∗i; j + �vn+1i−1; j

�x2
+
�v∗i; j+1 − 2�v∗i; j + �v∗i; j−1

�y2

)
(21)

In Equations (20) and (21), upwind di�erence approximations of the convective terms in the
x-direction are implemented and the terms representing the potential contributions are lagged.
The superscript denotes the iteration index (n) and the iterative process represents a vertical
line relaxation in the y-direction marching with the main �ow in the positive x-direction. The
time step �t, in Equations (20) and (21), must be small enough to ensure stability (see, for
example, Reference [4]). Similarly, an upwind di�erence approximation in the y-direction can
be implemented. Also, a horizontal line relation in the x-direction can be used if necessary.
A relaxation parameter � can be introduced in updating �ui; j and �vi; j, namely,

�un+1
i; j = �u

n
i; j + �( �u∗i; j − �un

i; j) (22)

�vn+1i; j = �v
n
i; j + �(�v∗i; j − �vni; j) (23)
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The boundary conditions at a solid surface are

�vi; j=0 (24)

and,

�ui; j=−�i+1; j − �i−1;j
2�x

(25)

If the surface is placed between the grid lines, �ctitious points are introduced inside the
body and the average of the unknowns at the �ctitious points and the points above the surface
are used in imposing the boundary conditions.
In the far �eld, a potential �ow is imposed, for example,

�x =given (26)
�u=0 (27)
�vx = �uy (28)

Other choices are also possible. For example,

�uy =0 (29)
�vx =0 (30)

Finally, a two-level strategy can be adopted to improve convergence as follows. First, the
viscous �ow region is identi�ed and the equation for �, �u, and �v are solved on a �ne mesh
with no slip and no penetration boundary conditions at solid surfaces assuming a uniform �ow
at the outer boundaries. The second step (or level) of calculations is to solve the potential
�ow equation, with the forcing function, evaluated in the viscous �ow region, over the whole
domain including the inviscid and viscous �ow regions.
This second step provides a better boundary condition at the interface between the viscous

and inviscid �ow regions. The viscous �ow equations are then solved with the new boundary
conditions at the interface between the two regions. The process is repeated until convergence.
In the second step, an inviscid mesh can be used everywhere provided that the forcing term
in the potential equation is integrated over the �ne mesh.

3. NUMERICAL RESULTS

Six two-dimensional and four three-dimensional problems were solved numerically in the
present work. All two-dimensional problems are solved with both the present potential function
method and the standard stream function=vorticity method. The two sets of solutions are in
good agreement. For more details see Reference [34].
All computations are done for Cartesian grids using �nite-di�erence method on uniform

meshes. Successive line over-relaxation is used as a solver for all tasks. Relaxation parameter
is chosen each time for each particular task to achieve faster convergence. Convergence is
considered acceptable if the residuals are, at least, 10−8.
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Figure 1. Boundary conditions for an in�nite �at plate.
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Figure 2. Flow past an in�nite �at plate. Pro�les of u-velocity
obtained using regular and staggered grids.

3.1. Two-dimensional problems

Flow past a in�nite �at plate: The �ow past an in�nite �at plate is solved for a domain
of (5× 0:4) of 41× 41 points. The �ow at the inlet is a developed boundary-layer �ow at
x=1, where the boundary layer thickness is �� 5:5=√Re. Boundary conditions for the present
method are shown in Figure 1.
Moreover, the �ow past an in�nite �at plate was solved over both regular and staggered

grids. Both solutions agree with each other (Figure 2).
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Figure 3. Boundary conditions for �nite �at plate.
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Figure 4. Flow past a �nite �at plate. u-velocity.

Flow past an �nite �at plate: Flow past a �nite �at plate is solved for a domain of
(10:5× 0:4) of 161× 161 points. Boundary conditions are shown in Figure 3.
Distributions of the velocities the u and v are shown in Figures 4 and 5 correspondingly.

Figures 6 and 7 show the u-velocity and the x-derivative of the potential function at y=0.
The development of the u-velocity is shown in Figures 8 and 9. The pressure distribution
based on the new modi�ed Bernoulli’s law is shown in Figures 10 and 11.
Flow with a pressure jump over a �at plate: The �ow with a pressure jump over a �at

plate is solved for a domain of (5× 0:4) of 81× 81 points. Boundary conditions are shown in
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Figure 5. Flow past a �nite �at plate. v-velocity.
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Figure 6. Flow past a �nite �at plate. u-velocity at y=0.

Figure 12. The �ow at the inlet is a developed boundary layer. The boundary-layer thickness
is �� 5:5=√Re.
A pressure jump is simulated by a jump of the u-velocity at the far�eld. For the present

case the value of u-velocity changes linearly from 1.0 to 0.87, starting from x=2 until x=3
(see References [14, 42, 43]).
Distributions of the velocities u and v are shown in Figures 13 and 14, respectively.
Flow between two �at plates: Boundary conditions for the �ow between two �at plates

are shown in Figure 15. Distributions of the velocities u and v are shown in Figures 17 and
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18, respectively. A domain is 200× 1 with 91 points in the x direction (10 points before the
plates) and 41 points in the y direction.
Based on dimensional analysis, the entrance length Le depends on the Reynolds number

only:

Le
d
=f(Red)
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where d is the distance between two plates (see Reference [35]). Figure 16 shows their linear
dependence

Le
d
= kRed (31)

where k � 0:084.
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Alternately, the boundary-layer thickness for a �ow past a �at plate without a pressure
gradient at L=Le is

�� 5:5
ReL

L

or,

d
L
� 11√

ReL
=

11√
�ud=�L=d

=
11√

Red
√

L=d
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Figure 13. Flow with a pressure jump over a �at plate. u-velocity.
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Figure 14. Flow with a pressure jump over a �at plate. v-velocity.

Therefore,

L
d
� 0:0083Red (32)

The coe�cient k in Equation (31) for the �ow between two plates is about 10 times greater
than the corresponding coe�cient for the �ow without a pressure gradient.
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Flow with suction in a channel between two plates: A �ow with suction in a channel
between two plates is solved for a domain of (10× 0:4) with 81 points in the x direction
and 81 points in the y direction. Boundary conditions are shown in Figure 19. The suction
is simulated by varying the v-velocity at the upper plate. The value of v-velocity changes as
a sine-function (Figure 19) starting from x=3 until x=5, vmax =0:15.
The u and v velocities are shown in Figures 20 and 21.
Flow past an in�nite rod: The geometry of a rod and the domain used for the computations

are shown in Figure 22. Boundary conditions are shown in Figure 23. The distributions of
the velocities u and v are shown in Figures 24 and 25, respectively.
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To avoid problems at the corner of the rod, a staggered grid is used where the solid surface
is placed between lines of the grid for the potential function. To study the e�ect of the corner,
more detailed calculations are required.

3.2. Three-dimensional problems

Flow past an in�nite swept wing: Computations are done for a �ow with Re=2080 over
a 45◦ swept wing. Boundary conditions used for the present computations are shown in

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1107–1137



1124 A. SHATALOV AND M. HAFEZ

0v

0u

=
=

0v

u x

=
φ−=

0y =φ

0v =

1

0v

1uu

0v

uu

x

1

=φ

=
−=

=
=

0

0v

0u

xx

xx

=φ
=
=







−

π=
12

1
max xx

x-x
sinvv 0v =

y 0u =
0v

u x

=
φ−=

0y =φ

1x 2x x 

Figure 19. Boundary conditions for �ow with suction.
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Figure 20. Flow with suction, u-velocity.

Figure 26. Figures 27 and 28 show the velocity distributions on the plane of the wing. The
calculations are consistent with the law of independence for laminar �ows with a constant
viscosity [36].
Flow along a corner: A �ow along a corner was studied by Carrier [37], Rubin [38], and

Stewartson and Howarth [39]. Boundary conditions used for the present computations of a
�ow along a corner are shown in Figures 29 and 30. The �ow far from the corner is assumed
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Figure 22. Geometry of a rod.

to be two dimensional. Therefore, boundary conditions for the potential function � at far�eld
are set as values of � calculated from a 2D �ow past a �at plate.
Figure 31 shows a comparison of the u-velocity calculated using the present method with

the u-velocity calculated by Carrier in [37]. The present calculations are in good agreement
with the results of [37].
Figure 31 is given in the co-ordinates �− �, where

�=
y√

�x=u∞
; �=

z√
�x=u∞

(33)
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Figure 24. Flow past an in�nite rod, u-velocity.

Flow in a duct with a square cross-section: Boundary conditions at the inlet and on the
solid surfaces of a duct are similar to that of Figure 30. The exit boundary condition for �
is �=const.
The duct is of length x=4 with a square cross-section y= z=0:1. The velocities in longi-

tudinal (x− z) cross-section are shown in Figures 32 and 33. The velocity distributions in the
y − z cross-section (at x=0:5) are shown in Figures 34 and 35. Figure 36 shows u-velocity
distributions within the fully developed �ow region.
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Figure 25. Flow past an in�nite rod, v-velocity.
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Figure 27. Flow past an in�nite swept wing, u-velocity on the plane of the wing.
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Figure 28. Flow past an in�nite swept wing, v-velocity on the plane of the wing.

The relation between the Reynolds number and the nondimensional entrance length is shown
in Figure 37.
Dimensional analysis shows

Le
d
= kf(Red) (34)
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Figure 31. Comparison of u-velocity calculated using the present method with u-velocity calculated by
Carrier (thin lines—present method; thick lines—Carrier).
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Figure 32. Flow in a duct with a square cross-section, u-velocity.

where d is the length of the side of the square cross-section. The present computations show
that for a �ow in a duct with a square cross-section

Le
d

� 0:016Red (35)
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Figure 33. Flow in a duct with a square cross-section, v-velocity (x − y
cross-section) and w-velocity (x − z cross-section).
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Figure 34. Flow in a duct with a square cross-section, u-velocity in y − z
cross-section within entrance length (at x = 0:5).

Notice for the two-dimensional case, k=0:084, which is large compared to the three-dimen-
sional case, as expected.
From the momentum equation, for a fully developed �ow:

uyy + uzz=C=const (36)
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Figure 35. Flow in a duct with a square cross-section, v-velocity in y − z
cross-section within entrance length (at x=0:5).
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Figure 36. Flow in a duct with a square cross-section. u-velocity in y − z
cross-section within fully developed �ow region.
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in a duct with a square cross-section.
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Figure 38. Boundary conditions for a �ow over a rod=thin plate on the sides of the domain.

Calculations show for a fully developed �ow that the cross-sectional changes of C are less
than 1%. Therefore, the computations agree with the fact that C stays constant within a fully
developed �ow region (see also Reference [40]).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1107–1137



1134 A. SHATALOV AND M. HAFEZ

0w

0v

0u

=
=
=

z

x

w

0v

u

φ−=
=

φ−=
0y =φ

x

y

z 

0w

0v

0u

=
=
=

0w

v

u

y

x

=

φ−=
φ−=

0z =φ

0w

0v

0u

=
=
=

z

y

w

v

0u

φ−=

φ−   =
=

0x =φ

Figure 39. Boundary conditions for a �ow over a rod=thin plate on the solid surfaces.

Flow over a rod, and �ow over a thin plate: Boundary conditions used in the computations
of the �ow over a rod are shown in Figures 38 and 39. The number of points in x, y, and
z directions is 17, 93 and 93, respectively. The Reynolds number is Re=2080. Figure 40
shows the u-velocity distribution in the y − z cross-section at x=3.
Boundary conditions used in the computations of a �ow over a thin plate are the same as

for the �ow over a rod (Figures 38 and 39). Plate dimensions are 0:15× 0:008. Figure 41
shows the u-velocities at a distance x=1 from the leading edge. The number of points in x,
y and z directions is 19, 55 and 56, respectively. The Reynolds number is Re=1:06× 105.
As the edge of the plate is approached, the boundary-layer thickness decreases and the

local skin friction rises. Variation of the skin-friction coe�cient on a �at plate is shown in
Figure 42.

Cf =
2
Re

@u
@z

(37)

where, Cf∞—skin-friction coe�cient far from the side edge of the plate, �∞—boundary-
layer thickness far from the side edge, and y is the distance from the side edge. This
example demonstrates the three-dimensional e�ect in the neighbourhood of the wing tips.
The calculations are consistent with that of Elder [41].
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Figure 40. Flow over a rod, u-velocity in y − z cross-section at x=3.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

y

z

0.
1 0.1 0.10.3 0.3 0.30.5 0.5 0.50.

7

0.7 0.7

0.
8

0.8 0.8 0.8

0.
9

0.9 0.9 0.9

0.
95

0.9
5

0.95 0.95

0.
99

0.
99

0.99 0.99

Figure 41. Flow over a thin plate, u-velocity in y − z cross-section at x=1.

4. CONCLUDING REMARKS

Numerical simulations of incompressible �ows, based on Helmholtz velocity decomposi-
tion, are presented. The results con�rm the validity of the present formulation for simple
two- and three-dimensional problems. Obviously, more sophisticated problems (with complex
geometries) can be analysed the same way on either structured or unstructured grids. Standard
numerical methods are employed in this work. The formulation is not, however, limited to
special discretization or iterative procedures. Accuracy and e�ciency can be improved with
higher-order schemes and convergence acceleration techniques (e.g. multigrid or GMRES).
Further studies are needed to assess the merits of this work quantitatively. For example, how
much savings can be achieved with the domain decomposition of inviscid and viscous �ows
and what would be the gain in accuracy, for a given number of points, due to the fact that no
arti�cial vorticity is generated in the inviscid �ow region even with coarse meshes. Finally, the
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present formulation can be extended to time-dependent problems in a straightforward manner
using dual-time steps.
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